How the crystal got its “six”

Jon Nelson

It's a cold winter's day in Prague, late in the year 1611. A waking home is worried
because he has no new-year’s gift for his friend, benefactorfediod/ philosopher.

Upon crossing over the Charles Bridge, some snow crystals glaietlyon his coat. The
crystals at first distract his thoughts, and then bring grdaghdeOf course! The six-
cornered crystals on his coat have brought a philosophical puzzle ¢éntpi@$is friend:

Why, he asks, do they always fall with six corners, not fiveeges? What is the origin
of the number six? Who shaped the little head before it fell, giving it six frozen?horns

Indeed, what is the origin of the six? Wty snow crystals often look nearly the same
when rotated by 1/6of a turn?

Johannes Kepler, like others in his time, did not have the atomic thiemtter to use
as an explanation. But he was nevertheless on the right tiaek e later wondered
whether ice bore a relation to the honeycomb of a beéhilredeed, the honeycomb
structure is very similar to what we see in the internal outéde lattice of a snow crystal.
If you could zoom in about a million times into any region of a sogwtal, such as the
branch tip in figure A below, you would see a lattice of hexagonal rings, as sketohed i
B. Each ring of six oxygen atoms (black) has the six-fold synyn#éiat is, the ring
looks the same when rotated by 1/6 of a turn. This six-fold synupatttern inside ice
provides a simple, though rather superficial, answer to the origin of the “6”.

Fig. 1. Inside the surfaces of a snow crystal (A). Dashed red lines in B) mark the crystal surface. The tiny
arrows in C) show the same hydrogen atom in both the top view (top) and front view (bottom). Oxygen
atoms are black, hydrogens are red, and lighter colors indicate further away.
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But things are not so simple. If you examine the rings fyrloer will notice that their
sides are all rotated by 30° in relation to the sides of th&tatryWhy the 30° twist?
Moreover, if you look at the orientations of the molecules (i.e., théaydcbgens), you
will see that the rings are actuaftgt six-fold symmetric. And, upon turning the ring on
its side, as irC, notice that it's not even flat. So, at the very least, impls answer is
incomplete.

In fact, the simple answer has a few problems. The intboreycomb just gives us a
similarity between the ice lattice and the crystal fornt suggests that the crystal may
develop six-fold symmetry. But just because a crystsl have six corners doesn’t mean
it will have six corners. Or, to return to Kepler’'s analogy, a beehive asanhaternal
honeycomb structure, and yet from the outside it appears blobby and ngstdebenidly
Six- cornered. So, just because the internal structure in snowstsoasitiny hexagonal
rings doesn’t mean the crystal should look the same when given a tlré. dhdeed,
because of the hydrogens, each ring doesn’t even look the sammetwhed by 1/6.
Moreover, to say that the six-cornered nature comes from the hekégtioa just raises
the next question: How did the lattice get its six-sided ring&?the “Why 6” question
all over again.

We'll address this latter problem first. Why is the lattieexagonal? A common
answer is that the shape of the water molecule forces the molecules to link é4zidéed
rings. Though true, it seems to conflict with another, little-knowst &bout water:
depending on the water pressure and temperature, water caflizeygtto, at last count,
14 other lattices, only two of which are hexagonal. That is, therwsaolecule’s shape
doesnot always force the lattice into hexagons. But we happen to live uhdesame
conditions that favor ordinary hexagonal ice, also called ice 1h‘lithetanding for
hexagonal), and not, for example, cubic ice (ice 1c) or tetragandicie 9). One could
argue that ice 1h is the more natural form, as it requires neither vergrigyvetatures nor
any externally applied pressure. So, at least in this ‘nafiarati of ice, the shape of the
water molecule produces forces that link the molecules into a lattice of hekeggea

Fig. 2. The 4-pole tetragonal model of water (above is a cartoon version”’).

But what are these forces and how do they produce hexagonal\Wiilge@ Bentley,
the farmer-scientist who obtained the first photomicrographs of sngstats, thought
the forces were electromagnetic and in 1910 proposed an elegtreticavater model to
help explain the six-cornered nature of ice. The water moleoutésimodéef’ had two
positive and two negative electrical poles plus some lesseofiglary” poles. His basic
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idea, though quite speculative, was useful. And it was far ahedd tilme. In 1933,
twenty-three years later, Bernal and Fowler, two pioneegregphysicists, proposed a
four-pole model of water to help explain the structure of ice. IBeit pole model didn’t
get much attention until it morphed into the more accurate “@nagfour-pole model
in 1951. In this model, the two hydrogens are the two positive poles, ahdati®ne-
pair orbitals” on the other side of the oxygen are the two negative, pdeshown in
figure 2. These negative poles, which are predicted by quantum mes;henel shown as
the dotted light-blue spheres. And just as Bentley had includedicaddisecondary
poles, later models added poles of weaker charge. In realitlyptits in ice are the more
complex hydrogen bond; nevertheless, the simpler pole model is stlltasstudy ice
because it is easier to calculate with. It is also easier for explauaitey properties.

B

Free molecule

Molecule in ice

As we see it
in the ring

Fig. 3. Electrical forces between the hydrogens and lone-pairs (dashed blue) force the water into a
hexagonal ring A) and slightly widen the opening angle of the water molecule to 106.6° (a perfect
tetrahedron would have 109.5°) B). At the bottom of B), the molecule has rotated up towards us such that
the angle now appears to be about 120°.

In this model, the positive pole of a molecule attracts the negaoieeof another,
forming a bond; similarly, the molecule’s remaining three polé&sacitthree other
molecules. As a result, each molecule bonds to two other moleculesnng, as shown
in Fig. 3A, as well as to a neighboring ring and to a ring either abovel@mwv b€&he ring
is hexagonal because the angle between the two poles on a mdilealtse to that
needed for a corner of a hexagon. In particular, this dongla free (i.e., not in ice or
liquid) molecule equals 104.5° (sBetop), which lies just 5° less than the 109.5° needed
to be a corner of a hexagon. (This 109.5° is less than the 120° betweenfsid#at
hexagon because the ring must “crumple” to form bonds to the riny®,abelow, and
beside the ring.) So the tetragonal nature of water natuealtislto a hexagonal lattite
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As to why the water molecule is tetragonal, the answer invothes quantum
electrodynamics of oxygen and hydrogen, and best left for those with much more time

The tetragonal bonding leads to some curious and important properties dihe
resulting hexagonal structure is relatively open, with large gspsces in the rings, and
for this reason ice 1h (and only 1h) is light enough to float on liquigtrwélso, as
mentioned above, if we pay attention to the hydrogens, we see that the eings raally
symmetric. Moreover, the hydrogen positions have no order; noticgurefd below
how each ring is different from its neighbors. This lack of ordeémportant for two
reasons. One, it leads to the curious electrical progertief properties that include
their being the electrical power source of thunderst trisnd more importantly for our
qguest, the randomness means that the forces produced by any grougsofafter
averaging, will be the same when turned by 1/6 of a turn. In thses¢he hexagonal
lattice, in contrast to each rindpes have six-fold symmetry.

Fig. 4. How rings link together in the hexagonal plane. Not all rings have the same water molecule
orientations. Rings in the planes directly above and below line up perfectly, by forming bonds at hydrogens
or lone-pairs either directly on top (shown here) of every other oxygen or directly below (not shown).

So the water molecule’s shape produces the microscopic hexagomew can this
affect the surface of a crystal perhaps a million timgdet The answer involves looking
at what happens where a ring contacts a crystal surface. Wedeon the surface
experience unequal forces — they are pulled more towards the afdite crystal — but
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these forces depend on which parts of the rings contact the su¥den only one
molecule from each such hexagonal ring lies at the surface, like in faeesumarked by
red dashed lines in Fig. 5 below, the forces make that surfaeerglativelyslowly. And

in the world of growing crystals, the slow-growing faces & dnes that spread out
along the crystal, effectively erasing the other faces. It seayn strange, but for crystal
faces, the fast-growers essentially burn themselves out anchyvaviide the slow-
growers dominate. Sometimes it pays to be slow.
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Fig. 5. Why six faces, 120° apart, occur. A) Hypothetical crystal shape in a rectangle. Very slow-growing
crystal faces, as marked by red-dashed lines, cross each surface ring at only one molecule. But the fast-
growing crystal faces marked in green cross each surface ring at two molecules. B) After four molecules
attach to the fast-growing faces, the crystal forms four new, slow-growing faces (red). C) As growth
continues, the green-dashed crystal faces vanish, leaving the crystal with six faces, 120° apart.

Because the fast-growing faces get eliminated, the remanystal faces will meet at
angles of 120°. To see how this works, look again at figure 5. The hypattreystal
initially has four faces that meet at 90° angles fsedBut molecules in the vapor, upon
striking the green-dashed faces, tend to lock into place, whévress striking a red-
dashed face do not attach. But as soon as molecules attach tcethéages new regions
of red-face begin to develop). Eventually, the new red-dashed faces on either side of a
green face meet, and the green faces vad¥hThe resulting crystal now has six faces,
all of them intersecting at 120° corners. This would happen no mattérthehanitial
crystal looked like: after the fast-growing faces grow out, dmyred-dashed type (i.e.,
with only ring corners on the surface) will remain. The ciystid then have neither
more than six, nor less than six fd8esnd all faces will intersect at 120° corners. So this
is how the microscopic internal hexagonal rings produce six, and nofif@jror seven
sides of the crystal.

Now, for the crystal to actually look the same when rotated@ygfld turn, and be big
enough for us to notice, a large, roughly symmetric six-pointad rsust form. This
requires three other things to happen: First, the crystal must tmowand broad,
meaning that the top and bottom faces (not shown in the above figureagjrowsnuch
slower than the six side faces. Second, the corners must growadasier than the rest
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of the six faces. And third, each of the six branches should grovady tlee same rate.
As sketched in figure 6, these three things do not always happen.

Fig. 6. For us to really notice snow’s six-cornered nature, a tiny prism must grow wide and thin, sprout
branches, and maintain a remarkable degree of symmetry, But these things do not always happen. Why?

As to why the crystal grows so thin, this was one of the dusistions Kepler asked
about snow. However, snow doesn’t always grow so thin; for somerstiiown reason
this happens only within a narrow temperature range. And how tmndeand third
occur has some interesting aspects and unkriBwthat will be left for discussion
elsewhere. But note that whether a crystal is six-corneredyamehestric (green arrows,
figure 6), columnar (yellow arrows), trigonal (orange arfpves some non-symmetric
form, adjacent faces always differ in angle by multipled20° (or 60° if some faces
vanish) for the reasons described above.

In 135 BC, the Chinese writer Han Ying noted that the flowers ofgpéastoften five-
pointed but the “flowers” of snow are six pointed. Seventeen centutexs Jahannes
Kepler tried to explain their six-pointed nature. We now understantbtbes that give
rise to the six-pointed nature within ice. But why exactly thystals actually resemble
flowers contains secrets that have yet to be revealed.
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| thank Yasuko Nelson for checking the text and making numerous helpfygtians.
This article is based on a similar one | wrote for the StadefBentley NewsletteBnow
Crystalsvol 17, 2011http://snowflakebentley.com/WBnews.htm#n17

1) For this and other info about Kepler, see “The Six-Cornered Snowfakiew
Year's Gift". Paul Dry Books, Philadelphia, PA, 2010. Most of the infeeher
about Kepler is also in Duncan Blanchard’s article “JohanneseKspSix-
Cornered SnowflakesSnow Crystalsvol 17, 2011.
http://snowflakebentley.com/WBnews.htm#n17

2) To see a non-cartoon version, see the excellent website aboet ata
http://www.Isbu.ac.uk/water/molecule.html#lp

3) Duncan Blanchard, The Snowflake Man, McDonald & Woodward Publishing Co,
Blacksburg, Virginia, 1998, pg. 147.

4) This tetragonal nature can also lead to a cubic lattitke,4afiold symmetry, but it
cannot lead to any structure with 5- or 7-fold symmetry; indeedrysiat can
have these symmetries — they are mathematically impossible.

5) See my article in the previous newsletter, “Mr Bentl&tectric Crystals” Show
Crystals vol 14, 2008http://snowflakebentley.com/\WWBnews.htm#n14

6) Not always true. For example, the branched crystal in figure 6 showse3((fat
including top and bottom). But the most important point here is thaetudting
angle between faces are always factors of 60° (usually 120°, buirsesa face
can be eliminated as in the bottom example of figure 6).

7) | analyze these topics in detail in my article “Branalov@h and Sidebranching
in Snow CrystalsCrystal Growth & Design, vol. 5,2005, pp 1509-1525.
http://www.storyofsnow.com/media/blogs/a/Snow%20branching%20paper.pdf
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