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How the crystal got its “six” 
 

Jon Nelson 
 
 
It’s a cold winter’s day in Prague, late in the year 1611. A man walking home is worried 
because he has no new-year’s gift for his friend, benefactor, and fellow philosopher. 
Upon crossing over the Charles Bridge, some snow crystals quietly land on his coat. The 
crystals at first distract his thoughts, and then bring great delight. Of course! The six-
cornered crystals on his coat have brought a philosophical puzzle to present to his friend: 
Why, he asks, do they always fall with six corners, not five or seven? What is the origin 
of the number six? Who shaped the little head before it fell, giving it six frozen horns? 
 
Indeed, what is the origin of the six? Why do snow crystals often look nearly the same 
when rotated by 1/6th of a turn? 
 
   Johannes Kepler, like others in his time, did not have the atomic theory of matter to use 
as an explanation. But he was nevertheless on the right track when he later wondered 
whether ice bore a relation to the honeycomb of a beehive(1). Indeed, the honeycomb 
structure is very similar to what we see in the internal molecular lattice of a snow crystal. 
If you could zoom in about a million times into any region of a snow crystal, such as the 
branch tip in figure 1A below, you would see a lattice of hexagonal rings, as sketched in 
B. Each ring of six oxygen atoms (black) has the six-fold symmetry; that is, the ring 
looks the same when rotated by 1/6 of a turn. This six-fold symmetric pattern inside ice 
provides a simple, though rather superficial, answer to the origin of the “6”.  

 
 



   

 Page 2 of 7 

    But things are not so simple. If you examine the rings further, you will notice that their 
sides are all rotated by 30º in relation to the sides of the crystal. Why the 30º twist? 
Moreover, if you look at the orientations of the molecules (i.e., the red hydrogens), you 
will see that the rings are actually not six-fold symmetric. And, upon turning the ring on 
its side, as in C, notice that it’s not even flat. So, at the very least, the simple answer is 
incomplete. 
 
   In fact, the simple answer has a few problems. The internal honeycomb just gives us a 
similarity between the ice lattice and the crystal form – it suggests that the crystal may 
develop six-fold symmetry. But just because a crystal may have six corners doesn’t mean 
it will have six corners. Or, to return to Kepler’s analogy, a beehive also has an internal 
honeycomb structure, and yet from the outside it appears blobby and nondescript – hardly 
six- cornered. So, just because the internal structure in snow consists of tiny hexagonal 
rings doesn’t mean the crystal should look the same when given a turn of 1/6. Indeed, 
because of the hydrogens, each ring doesn’t even look the same when turned by 1/6. 
Moreover, to say that the six-cornered nature comes from the hexagonal lattice just raises 
the next question: How did the lattice get its six-sided rings? It is the “Why 6” question 
all over again.  
 
   We’ll address this latter problem first. Why is the lattice hexagonal?  A common 
answer is that the shape of the water molecule forces the molecules to link up into 6-sided 
rings. Though true, it seems to conflict with another, little-known fact about water: 
depending on the water pressure and temperature, water can crystallize into, at last count, 
14 other lattices, only two of which are hexagonal. That is, the water molecule’s shape 
does not always force the lattice into hexagons. But we happen to live under the same 
conditions that favor ordinary hexagonal ice, also called ice 1h (the ‘h’ standing for 
hexagonal), and not, for example, cubic ice (ice 1c) or tetragonal ice (ice 9). One could 
argue that ice 1h is the more natural form, as it requires neither very low temperatures nor 
any externally applied pressure. So, at least in this ‘natural’ form of ice, the shape of the 
water molecule produces forces that link the molecules into a lattice of hexagonal rings.  

 
 
   But what are these forces and how do they produce hexagonal rings? Wilson Bentley, 
the farmer-scientist who obtained the first photomicrographs of snow crystals, thought 
the forces were electromagnetic and in 1910 proposed an electromagnetic water model to 
help explain the six-cornered nature of ice. The water molecule in his model(3) had two 
positive and two negative electrical poles plus some lesser “secondary” poles. His basic 
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idea, though quite speculative, was useful. And it was far ahead of its time. In 1933, 
twenty-three years later, Bernal and Fowler, two pioneering ice physicists, proposed a 
four-pole model of water to help explain the structure of ice. But their pole model didn’t 
get much attention until it morphed into the more accurate “tetragonal” four-pole model 
in 1951. In this model, the two hydrogens are the two positive poles, and the two “lone-
pair orbitals” on the other side of the oxygen are the two negative poles, as shown in 
figure 2. These negative poles, which are predicted by quantum mechanics, are shown as 
the dotted light-blue spheres. And just as Bentley had included additional secondary 
poles, later models added poles of weaker charge. In reality, the bonds in ice are the more 
complex hydrogen bond; nevertheless, the simpler pole model is still used to study ice 
because it is easier to calculate with. It is also easier for explaining water properties. 

 
 
   In this model, the positive pole of a molecule attracts the negative pole of another, 
forming a bond; similarly, the molecule’s remaining three poles attract three other 
molecules. As a result, each molecule bonds to two other molecules in the ring, as shown 
in Fig. 3A, as well as to a neighboring ring and to a ring either above or below. The ring 
is hexagonal because the angle between the two poles on a molecule lie close to that 
needed for a corner of a hexagon.  In particular, this angle for a free (i.e., not in ice or 
liquid) molecule equals 104.5º (see B, top), which lies just 5º less than the 109.5º needed 
to be a corner of a hexagon. (This 109.5º is less than the 120º between sides of a flat 
hexagon because the ring must “crumple” to form bonds to the rings above, below, and 
beside the ring.) So the tetragonal nature of water naturally leads to a hexagonal lattice(4). 
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As to why the water molecule is tetragonal, the answer involves the quantum 
electrodynamics of oxygen and hydrogen, and best left for those with much more time.  
 
    The tetragonal bonding leads to some curious and important properties of ice. The 
resulting hexagonal structure is relatively open, with large empty spaces in the rings, and 
for this reason ice 1h (and only 1h) is light enough to float on liquid water. Also, as 
mentioned above, if we pay attention to the hydrogens, we see that the rings are not really 
symmetric. Moreover, the hydrogen positions have no order; notice in figure 4 below 
how each ring is different from its neighbors. This lack of order is important for two 
reasons. One, it leads to the curious electrical properties of ice – properties that include 
their being the electrical power source of thunderstorms(5). And more importantly for our 
quest, the randomness means that the forces produced by any group of rings, after 
averaging, will be the same when turned by 1/6 of a turn. In this sense, the hexagonal 
lattice, in contrast to each ring, does have six-fold symmetry. 

 
 
    So the water molecule’s shape produces the microscopic hexagons, but how can this 
affect the surface of a crystal perhaps a million time larger? The answer involves looking 
at what happens where a ring contacts a crystal surface. Molecules on the surface 
experience unequal forces – they are pulled more towards the inside of the crystal – but 
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these forces depend on which parts of the rings contact the surface. When only one 
molecule from each such hexagonal ring lies at the surface, like in the surfaces marked by 
red dashed lines in Fig. 5 below, the forces make that surface grow relatively slowly. And 
in the world of growing crystals, the slow-growing faces are the ones that spread out 
along the crystal, effectively erasing the other faces. It may seem strange, but for crystal 
faces, the fast-growers essentially burn themselves out and vanish, while the slow-
growers dominate. Sometimes it pays to be slow.  

 
 
   Because the fast-growing faces get eliminated, the remaining crystal faces will meet at 
angles of 120º. To see how this works, look again at figure 5. The hypothetical crystal 
initially has four faces that meet at 90º angles (see A). But molecules in the vapor, upon 
striking the green-dashed faces, tend to lock into place, whereas those striking a red-
dashed face do not attach. But as soon as molecules attach to the green face, new regions 
of red-face begin to develop (B). Eventually, the new red-dashed faces on either side of a 
green face meet, and the green faces vanish (C). The resulting crystal now has six faces, 
all of them intersecting at 120º corners. This would happen no matter what the initial 
crystal looked like: after the fast-growing faces grow out, only the red-dashed type (i.e., 
with only ring corners on the surface) will remain. The crystal will then have neither 
more than six, nor less than six faces(6) and all faces will intersect at 120º corners. So this 
is how the microscopic internal hexagonal rings produce six, and not four, five, or seven 
sides of the crystal. 
 
    Now, for the crystal to actually look the same when rotated by 1/6 of a turn, and be big 
enough for us to notice, a large, roughly symmetric six-pointed star must form. This 
requires three other things to happen: First, the crystal must grow thin and broad, 
meaning that the top and bottom faces (not shown in the above figures) must grow much 
slower than the six side faces. Second, the corners must grow outward faster than the rest 
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of the six faces. And third, each of the six branches should grow at nearly the same rate. 
As sketched in figure 6, these three things do not always happen.  
 

 
 
   As to why the crystal grows so thin, this was one of the first questions Kepler asked 
about snow. However, snow doesn’t always grow so thin; for some still unknown reason 
this happens only within a narrow temperature range. And how the second and third 
occur has some interesting aspects and unknowns(7) that will be left for discussion 
elsewhere. But note that whether a crystal is six-cornered and symmetric (green arrows, 
figure 6), columnar (yellow arrows), trigonal (orange arrows), or some non-symmetric 
form, adjacent faces always differ in angle by multiples of 120º (or 60º if some faces 
vanish) for the reasons described above. 
 
   In 135 BC, the Chinese writer Han Ying noted that the flowers of plants are often five-
pointed but the “flowers” of snow are six pointed. Seventeen centuries later, Johannes 
Kepler tried to explain their six-pointed nature. We now understand the forces that give 
rise to the six-pointed nature within ice. But why exactly the crystals actually resemble 
flowers contains secrets that have yet to be revealed.   
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------------------------------------------------------------------------------------------- 
I thank Yasuko Nelson for checking the text and making numerous helpful suggestions. 
This article is based on a similar one I wrote for the Snowflake Bentley Newsletter: Snow 
Crystals vol 17, 2011. http://snowflakebentley.com/WBnews.htm#n17 
 

1) For this and other info about Kepler, see “The Six-Cornered Snowflake: A New 
Year’s Gift”. Paul Dry Books, Philadelphia, PA, 2010. Most of the info here 
about Kepler is also in Duncan Blanchard’s article “Johannes Kepler’s Six-
Cornered Snowflakes” Snow Crystals vol 17, 2011.         
http://snowflakebentley.com/WBnews.htm#n17 

   
 
2) To see a non-cartoon version, see the excellent website about water at 

http://www.lsbu.ac.uk/water/molecule.html#lp 
 
3) Duncan Blanchard, The Snowflake Man, McDonald & Woodward Publishing Co, 

Blacksburg, Virginia, 1998, pg. 147. 
 

4) This tetragonal nature can also lead to a cubic lattice, with 4-fold symmetry, but it 
cannot lead to any structure with 5- or 7-fold symmetry; indeed, no crystal can 
have these symmetries – they are mathematically impossible. 

 
5) See my article in the previous newsletter, “Mr Bentley’s Electric Crystals”, Snow 

Crystals vol 14, 2008. http://snowflakebentley.com/WBnews.htm#n14  
 

6) Not always true. For example, the branched crystal in figure 6 shows 90 faces (not 
including top and bottom). But the most important point here is that the resulting 
angle between faces are always factors of 60º (usually 120º, but sometimes a face 
can be eliminated as in the bottom example of figure 6).  

 
7) I analyze these topics in detail in my article “Branch Growth and Sidebranching 

in Snow Crystals” Crystal Growth & Design, vol. 5, 2005, pp 1509–1525.  
http://www.storyofsnow.com/media/blogs/a/Snow%20branching%20paper.pdf 
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